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Ceramic composites: TiB2-TiC-SiC 
Part I Properties and microstructures in the ternary system 

F. de MESTRAL,  F. THEVENOT 
Ecole Nationale Superieure des Mines de Saint-Etienne, 158 cours Fauriel, 42023 St. Etienne 
Cedex, France 

In the ternary system TiB2-TiC-SiC, the different two-phase composites, TiC-TiB=, SiC-TiB2 
and SiC-TiC exhibit remarkable mechanical properties in regard with the single phase ceramics. 
The evolution of those properties, i.e. modulus of rupture ~f, fracture toughness Klc, critical flaw 
size ac, hardness Hv, coefficient of thermal expansion 0~ and electrical resistivity 9, over the 
complete ternary diagram was investigated. 

A methodology of research using optimal design was used to minimize the number of 
composites to be elaborated. In this study, 16 samples were sufficient to empirically determine 
a provisional mathematical model for each property. A model, then, enables the plot of 
isoresponse curves in the ternary diagram. The samples were hot pressed and the optimal 
hot-pressing cycles were determined using densification rates against temperature curves. The 
concordance between computed and experimental values is excellent, e.g. a sample containing 
20mo1% of TiB2, 55mo1% of TiC and 25mo1% of SiC has ~fexp= 1080MPa, 
O-fcom p = 1070 MPa; Klcex p = 6.7 MPam l/z, Klccorn p = 6 MPa mr/2; Hvex p = 16.6 GPa, 
Hvcomp = 17.3 GPa; and P e x p  = 57.4 gf~ cm, 9comp = 55 I~s cm. 

Although titanium diboride does not react with silicon carbide, a strong interface bond is 
developed between titanium diboride and titanium carbide, and between titanium carbide and 
silicon carbide. This explains the bend strength evolution in the ternary system, and more 
particularly the fact that, in the area o-f > 1000 MPa and Klc > 6 MPam 1/2, to high SiC contents 
correspond to low TiB2 contents and conversely. The relevant microstructures will be discussed. 

1. I n t r o d u c t i o n  
Carbide and boride ceramics have intrinsic charac- 
teristics, i.e. high melting point, high hardness, good 
chemical inertness, high wear resistance, good 
strength, that make them suitable candidates for ther- 
momechanical applications. However, the use of those 
single phase ceramics, even fully densified, in struc- 
tural or wear applications is limited by the variability 
of their mechanical strength and their poor fracture 
toughness. The scatter of the strength measurements 
is usually attributed to microstructural defects such 
as pores, inclusions, exaggerated grain growth or 
nonuniform sintering. The number of those defects, 
and hence their influence, could be seriously reduced 
by a careful mastery of each step of the elaboration 
process. 

Second phase additions can improve the strength 
and the fracture toughness of single phase ceramics. 
This second phase can act as a particle phase trans- 
forming toughening, e.g. zirconia toughened alumina, 
or as an intergranular binder, either glassy, e.g. 
SIALONs, or metallic, e.g. WC-Co. Although these 
methods are quite efficient at room temperature, the 
toughening mechanisms do not hold with increasing 
temperatures. This is due either to inappropriate 
phase transformation, or to binder softening or recrys- 
tallization. However, the use of a second phase that is 
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both thermodynamically and chemically stable with 
the host matrix will allow the retention of the matrix- 
second phase intrinsic properties, even at elevated 
temperatures. Depending on the physical character- 
istics and the shape of the second discrete phase, i.e. 
fibres, whiskers or particles, the toughening mechan- 
isms can be fibres pullout or shearing, crack tip deflec- 
tion or pinning, and/or crack tip stress redistribution. 

The good electrical conductivity of titanium dibor- 
ide as well as its chemical inertness at high tempera- 
tures make it a good candidate for special electrical 
applications [1% e.g. cathodes used in aluminium elec- 
trosmelting or vapourizing elements for vacuum metal 
deposition installations. However these applications 
are mainly limited by TiBz poor fracture toughness 
and its sensitivity to slow subcritical crack growth. 
Titanium carbide was found to be an efficient 
toughening second phase [1, 2]. 

High density silicon carbide is an extremely hard 
and wear resistant material which has, furthermore, 
excellent corrosion, thermal shock and oxidation res- 
istance. All these properties together with its good 
high temperature strength allow the use of SiC for 
numerous structural and wear applications, e.g. heat 
exchanger, metal working parts, nozz les . . .  However, 
once more, SiC moderate fracture toughness limits its 
use under severe conditions. Additions of TiBz [3, 4, 
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5] or TiC [5-7] particles were found to be effective in 
terms of increasing fracture toughness. Titanium car- 
bide has a further advantage since it possesses five 
independent slip systems which allow the material to 
be ductile above ~ 800~ [8]. Such plasticity may 
result in a stress redistribution at the crack tip and, 
hence, toughens the composite at high temperatures. 

Composites based on the three ceramics, 
TiBz-TiC SiC, could be tailored with very different 
characteristics, depending on which phase is the major 
constituent. A predominance of SiC would lead to 
a composite for structural and corrosion applications, 
and a composite based on TiC or TiB2 could be used 
for electrical applications. The knowledge of the com- 
posites properties for every composition over the com- 
plete ternary diagram would be paramount for the 
selection of an optimized composite for a determined 
application. The present paper discusses the evolution 
of properties in the complete ternary system: modulus 
of rupture ~f, fracture toughness K 1~, critical flaw size 
ar hardness Hv, coefficient of thermal expansion 
cz (CTE) and electrical resistivity P. 

2. Methodology 
It has been shown that the different two-phase com- 
posites TiB2 TiC, SiC-TiB2, SiC-TiC, exhibit much 
better mechanical properties than the single phase 
ceramic, TiB2, TiC and SiC [1, 3, 6]. Would the 
addition of the third phase in the composites further 
improve those mechanical characteristics? One clas- 
sical way of answering this question could be to take 
a well-known two-phase ceramic, e.g. SiC-TiB2, and 
study the effect of the substitution of some TiB2 by 
TiC. Although this technique may lead to good res- 
ults, it does not allow to find the optimum composi- 
tion of the ternary system. This last point would 
require the knowledge of a property value for an 
infinite number of compositions, which is obviously 
non-applicable. Even if the study is limited to com- 
positions taken every 10 or 5 per cents, it would 
require the manufacture of 66 and, respectively, 231 
samples, which is still prohibitive. A methodology 
of research using a statistical approach is hence 
necessary. 

Phan-Tan-Luu developed a methodology of re- 
search using optimal design [9, 10] and applied it to 
the problems of mixtures [11, 12]. The aim of the 
methodology consists in describing, predicting or ex- 
plaining the studied phenomenon, i.e. finding the 
relations between the factors (in this study, the com- 
position of the composites) and the responses (here, 
the different properties). This is done with a limited 
number of points by substituting the local knowledge 
by a space knowledge using mathematical models. 

In this study, polynomial models up to the third 
degree were developed. The time required to optimize 
the complete processing route of every composite was 
estimated to be prohibitive. Therefore, the arbitrary 
choice was made, first to determine the best composi- 
tion on non-optimized samples and, only then to 
optimize its whole elaboration process. However, the 
validity of a composite for its use in the model's 
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calculation still has to be assessed. Two criteria are 
used: density and microstructure. The density has to 
be higher than 98% of theoretical density (computed 
using the mixture rule) and a visual check has to make 
sure the microstructure is fine and homogeneous. 

3. Experimental procedures 
The starting powders were: titanium diboride, grade 
A from Starck (Berlin), mean particle size ~ 4 gm; 
titanium carbide ceramic grade C.A.S. from Starck, 
mean particle size ~ 3 ~tm and ~ silicon carbide from 
ESK (Germany) mean particle size ~ 1 gm. The pow- 
ders were desagglomerated in ethanol with an ultra- 
sonic desintegrator, and then mixed for three days in 
a small ballmill. The mixture was vacuum dried and 
sieved at 200 gm. The powders were then hot-pressed 
in graphite dies under 40 MPa in argon atmosphere in 
tablets with 20 mm in diameter and 15 mm in height. 
The resulting ceramic cylinders were cut by electron 
discharge machining in four bars of dimensions 
3 x 4 x 18 mm a. One face of these bars was carefully 
polished down to 3 gm with diamond paste and its 
edges were beveled. The flexural strength was meas- 
ured under 3 point bending (15 mm outer span), the 
fracture toughness was determined using the Vickers 
indentation technique (carried out at l'Ecole Nation- 
ale Sup6rieure des Mines de Paris), the coefficient of 
thermal expansion between 20 and 1200~ under 
argon and the electrical resistivity was measured with 
the four linear points method. 

3.1. Hot-pressing technique 
The material used is a laboratory press, type VS Pgr 
7/10 from Degussa.[13, 14]. The temperature limit of 
the graphite resistor is 2500 ~ A double-action pneu- 
matic jack can develop forces up to 20 kN. Since the 
inner diameter of the die is 20mm, a pressure of 
60 MPa can be reached. It is, however, limited to 
40 MPa due to the graphite creep resistance. The 
working atmosphere is either vacuum or inert gas. 

The special feature about this press is that, both the 
measure and the control of the temperature, pressure 
and displacement are completely computerized. This 
allows a very close control of the phenomenon occur- 
ring during sintering. The selected mixtures were hot- 
pressed a first time and the related densification rate 
versus temperature curves were plotted (Fig. 1). The 
overall dilatation of the system press plus carbon die 
and plungers was found to be linear from 800 to 
2100 ~ Therefore, it is possible to neglect it since it 
will only influence the height of the densification rate 
peak but will not cause any shifting of its actual 
position. 

From these plots, the optimum hot-pressing cycles 
were determined. A 0.5 h stage at the temperature of 
maximum densification rate was found to result in 
samples having approximately 95% theoretical dens- 
ity. A second stage about 150 ~ above is necessary to 
achieve full densification. A typical hot-pressing cycle 
plot is given for a composite with 33.3 mol % of each 
phase (Fig. 2). It consists in a first stage at 1800 ~ for 
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Figure 1 Densification rate against temperature curves for three different composites. 
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Figure 2 Typical hot-press control plot showing the temperature, the plungers displacement, the pressure and the densification rate as 
function of time. 

30 rain and a second one at 1950~ for 10rain; the 
heating and cooling rates are of 30 ~ m i n -  1; the ap- 
plied pressure was 40 MPa.  The advantage of such 
a cycle is that  most  of the densification occurs at 
a rather low temperature and that the higher temper- 
ature stage is short. Therefore, there is no time for 
grain growth to occur, and the resulting microstruc- 
ture is fine and homogeneous.  

4. R e s u l t s  a n d  d i s c u s s i o n  
4.1. Interactions in the system 
Dense cylinders of TiB2, TiC and SiC, polished down 
to 6 pm, were held together at 2100~ for 2h  under 
40 MPa.  The first evidence is that  no reaction at all 
occurred between TiB2 and SiC since the two tablets 
fall apart  once pushed out of the die. This is consistent 
with the observations of  M c M u r t r y  et  al., [3]. How-  

5549 



ever, the two other diffusion couples were found to be 
firmly bonded. Fig. 3 shows the TiB2 TiC interface. 
TiC diffused in TiB2 on an average distance of 50 lain. 
Ordon'yan [15] found a very small solubility of TiB2 
in TiC at temperatures equal or higher than 2100 ~ 
Since both materials exhibit a very similar coefficient 
of thermal expansion (CTE) ( ~ 8 10- 6 K -  1 ), no inter- 
face stresses are generated during cooling. It is 
therefore possible to assume a very strong cohesion 
between TiB2 and TiC particles. 

The interface between TiC and SiC (Fig. 4) exhibits 
a marked degradation of the TiC region. This is due to 
the large CTE mismatch, i.e. 8 x 10-6K -1 for TiC 
and 4.8 x 10-6K -1 for SiC. However, this degrada- 
tion proves that both materials develop very strong 
bonds even at 2100 ~ We• and Becher [6] also con- 
cluded to strong TiC-SiC bonds since they found no 
evidence of interfacial debonding in their composite, 
and Jiang [16] proved it with a TEM study of 
a TiC-SiC composite. Diffusion takes place in SiC on 
an average distance of 20 gm (Fig. 4). This diffusion 
seems to be favoured by the presence of Fe and Co. 

Figure 3 TiB2 ( b l a c k ) - T i C  (white) in terface  (2100 ~ 2 h, 40 MPa) .  

4.2. Bend  s t r eng th  
The bend strength of eighteen different composites are 
listed in Table I. The flexural strength of pure TiC and 
pure SiC are rather low in regard of the values ob- 
tained for the other composites, i.e. 550 _+ 10% MPa 
and 500 MPa, respectively. Of the three 50-50 % com- 
posites, it is normal for the TiB2 SiC combination to 
exhibit the lower flexural strength (630 + 7% MPa) 
since there is no or little interaction between SiC 
and TiB2 particles. The other two-phase composites, 
TiC-TiB2 and TiC-SiC, have satisfactory modulus of 
rupture, i.e. 950 +_ 10% MPa and 910 _+ 8 %, respect- 
ively. This is consistent with the interaction observa- 
tions since TiC was found to develop strong bonds 

Figure 4 SiC ( b l a c k ) - T i C  (white) in terface  (2100 ~ 2 h, 40 MPa) .  

with both TiB2 and SiC. It is interesting to notice 
that the higher flexural strengths (cyf > 1000 MPa) are 
located in an area located "far away" from the 
TiB2-SiC axis. The maximum SiC content of these 
compositions, i.e. point 8, 9, 12, 15 and 17, never gets 
over 33 tool%. The average standard deviation is 
around 10 %, and since we are dealing with strength 
up to nearly 1100 MPa, the precision of the math- 
ematical model cannot be better than + 100 MPa. 

T A B L E I E x p e r i m e n t a l  va lues  o f  f lexural  s t r e n g t h  a n d  the i r  differences wi th  p o l y n o m i a l  m o d e l s  of  first, second,  r e d u c e d  cub ic  a n d  cub ic  

degrees  

TiB2 T iC  SiC F lexura l  

(tool % )  s t r e n g t h  

( M P a )  

Differences  wi th  p o l y n o m i a l  mode l s  of  degree  
1 st 2 nd cub.  red. 3rd 

1 100 0 0 890 • 24 84 23 20 13 

2 0 100 0 550 • 54 388 63 60 9 

3 0 0 100 500 122 - 46 - 49 10 

4 50 50 0 950  • 98 6 84 88 90 

5 50 0 50 628 • 43 170 110 113 111 

6 0 50 50 907 • 70 --  127 45 48 48 

7 33 33 33 970 • 77 126 20 0 0 

8 67 33 0 1030 • 140 --  67 24 27 51 

9 33 67 0 1083 • 164 - 133 --  129 - 126 - 51 

10 67 0 33 973 • 75 - 117 - 165 --  162 - 63 

11 33 0 67 624 • 15 115 31 34 --  63 

12 0 67 33 1040 • 75 --  208 - 109 - 105 - 27 

13 0 33 67 831 • 130 - 104 48 51 --  27 

test po in t s  

14 67 16.5 16.5 9 8 0 •  107 - 70 - 3 --  12 5 
15 16.5 67 16.5 1 0 7 4 •  --  t83  --  127 --  136 --  17 

16 16.5 16.5 67 7 1 6 ! 4 8  135 79 69 - - 6 7  

17 32 55 13 1073 • 131 165 - 65 77 13 

18 20 55 25 1075 • 106 - 209 - 82 - 96 - 11 
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Therefore the validity criterion for a model is that 
both the polynomial fitting and the test points fall 
within 100 MPa of the experimental data. 

The mathematical model developed for the descrip- 
tion of a property being purely empirical, it has to 
remain as simple as possible. To illustrate this point, 
the difference between the theoretical values, com- 
puted with linear, quadratic, reduced cubic and cubic 
polynoms, and the experimental data are reported in 
Table I. The four models are determined using points 
1 to 13. Since there are more points than theoretically 
necessary, a polynomial fitting is made (NEMROD 
[12]) which explains the discrepancy between the 
experimental measurements and calculated values. 
Points 14 to 18 are test points only used to assess the 
validity of the models. The first degree model is of 
really poor quality since both the polynomial fitting 
and the test points exhibit differences A with the 
measured values much higher than 100MPa 
(13 k > 100 MPa and k max. = 388 MPa). The quad- 
ratic and the reduced cubic models are already more 
accurate since the regression generates four values 
with k > 100 MPa (A max. = 165 MPa) and only one 
test point has a difference higher than 100 MPa. How- 
ever it is still not satisfactory. On the other hand, with 
the complete cubic model only one point has 
A > 100 MPa and the three test points 14, 15 and 16 
have accurate predicted values. (k < 67 MPa). It is 

T i  

therefore concluded that the cubic model (Equation 1) 
satisfactorily describes the evolution of the bend 
strength over the complete ternary diagram. 

Y = 903X1 + 559X2 + 510X3 

+ 1238X1X2 + 133X1X3 + 1683X2X3 

- l 1 3 2 X 1 X 2 ( X l  - X2) + 1472XtX3 

x (X1 X3) + 1301X2X3(X2 - X 3 )  

- 7 1 4 X 1 X 2 X 3  (1) 

where Y is the flexural strength and Xi the molar 
fraction of i, with 1 : TiB2, 2" TiC, 3" SiC. 

Once the polynomial model is determined it is pos- 
sible to plot isoresponse curves. Fig. 5 shows the 
predicted isoflexural strength curves in the complete 
ternary diagram. The experimental measurements are 
also reported to allow direct comparison with the 
predicted values. 

This third degree polynomial model predicts a max- 
imum bend strength value of 1087 MPa for the com- 
position 32 mol % TiB2, 55 mol % TiC, 13 mol % 
SiC. This is an obvious point to check to assess the 
validity of the model. The experimental strength is 
found to be 1073 _+ 12% MPa (point 17). The cor- 
respondence between the experimental and the pre- 
dicted values is excellent. A backscattered electron 
image of this optimum composite microstructure is 

B2 
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S i C a30~i30 mo,70 i040~75 T i C 

Figure 5 Isobend strength curves plotted using a third order polynomial model. The incrementation step between two curves is 25 MPa. The 
black points are test points. 
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On the other hand, for composite 16 (67 mol % SiC) 
only a slight decrease is measured (26%). This is due to 
the good inertness of SiC to nitrogen. 

Figure 6 Backscattered electron micrograph of the max imum bend 
strength composite (No. 17), i.e. 32 mol % TiB2 (grey)-55% TiC 
(white) 13% SiC (black). 

given in Fig. 6. Nearly every grain of both discrete 
phases TiB 2 and SiC is surrounded by the TiC matrix. 
Therefore, the number of weak TiB2-SiC contact 
points is of minor importance in regard with the 
strong TiC SiC and TiC-TiB2 interactions. This is 
consistent with the fact that, in the large area 
cyf > 1000 MPa, to high SiC content corresponds low 
TiB2 content and inversely, i.e. large SiC amounts are 
never found together with large TiB2 amounts. 

The flexural strength at 1200 ~ for the three phase 
composites is determined under nitrogen (Table II). 
The sharp decrease is due to the degradation of the 
surface layer by nitrogen. TiC being the more sens- 
itive, composite 15 and 18 exhibit the larger difference. 

4.3. Fracture t o u g h n e s s  
The fracture toughness of the single phase ceramics 
are relatively low, i.e. 5 M P a m  1/2 for TiB2, 
4,4 M P a m  1/2 for TiC and 2.9 M P a m  t/2 for SiC (see 
Table III). The two phase composites exhibit already 
a higher KI~, i.e. 5 .2MPam 1/2 for TiBz-TiC, 

�9 6 , 3MPam 1/2 for SiC TiC and 5.1 MPam ~/2 for 
SiC TiB2. However, the best fracture toughness 
values were measured for the three phase composites, 
i.e. the four of them (points 7, 14, 15, and 16) have an 
average value of 6.1 _+ 0,2 M P a m  1/2. 

A second order polynomial model (Equation 2) is 
sufficient to describe the evolution of the fracture 
toughness over the complete ternary diagram. 

Y = 5.1X1 + 4.4X2 + 3X3 + 2.7XxX2 

+ 5.4X1X3 + l l .2X2X3 (2) 

where Y is the fracture toughness and Xi the molar 
fraction of i, with 1 : TiB2, 2 : TiC, 3 : SiC. 

The maximum difference between the predicted and 
the measured values is 0.7 M P a m  ~/2, which is rela- 
tively large. However, it is not possible to expect the 
mathematical model to issue values with more preci- 
sion than the experimental accuracy. Considering the 

T A B L E  II Experimental values of ftexural strength at room temperature and at 1200~ 

TiB2 TiC SiC of 1200~ of RT Acyf 
(tool %) (MPa) (MPa) (%) 

14 67 16.5 t6.5 461 • 39 966 _+ 40 52.3 
15 16.5 67 16.5 358 _+ 25 929 • 151 61.5 
16 16.5 16.5 67 572 775 _+ 29 26.2 
18 20 55 25 456 • 51 1216 • 95 62.5 

T A B L E I I I Experimental values of fracture toughness and their differences with polynomial models of first and second degrees 

TiB2 TiC SiC Fracture Differences with polynomial 
(tool %) toughness models of degree 

(MPa m 1/2) 1 s' 2 na 

1 100 0 0 5 .0 •  - 0 . 8  0.1 
2 0 100 0 4 . 4 •  1.3 0 
3 0 0 100 2 . 9 •  1.7 0.1 
4 50 50 0 5 . 2 •  0.5 0.2 
5 50 0 50 5 . 1 •  0.0 0.3 
6 0 50 50 6 . 3 •  - 1 . 2  0.2 
7 33 33 33 5.9 •  - 0 . 6  0.4 

14 67 165 16.5 6 . 4 •  - 0 . 9  - 0 . 6  
15 16.5 67 16.5 6 . 2 •  - 0 . 7  - 0 . 2  
16 16.5 16,5 67 5 . 9 •  - 1 . 0  - 0 . 4  

test points 

8 67 33 0 4.9 _+ 0.4 0.8 0.6 
9 33 67 0 5.2 • 0.5 0.5 0.0 

I0 67 0 33 6.3 • 0.4 - 0.9 - 0.7 
11 33 0 67 4.2 • 0.2 0.8 0.7 
12 0 67 33 6.4 _+ 0.2 1.1 0.0 
13 0 33 67 5.6 + 0.3 - 0.7 0.3 
17 32 55 13 6.7 • 0.5 - 1.1 - 0.7 
18 20 55 25 6.4 _+ 0.7 - 1.1 - 0.1 
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confidence it is possible to have in fracture toughness 
measurements using Vickers indentation technique, as 
well as their standard deviation, the accuracy of the 
predicted values is within _+ 1 M P a m  ~/2. 

The isofracture toughness curves plot is given in 
Fig. 7. It is particularly interesting to study the tough- 
ness evolution at the experimental field boundaries. 
On the TiB2-TiC axis, major reinforcement effects are 
not expected since the CTE of both materials are 
similar. However, their good cohesion allows for 
a steady stage of about 5 M P a m  ~/2 to be reached 
(composites No. 4, 8, 9). 

On the TiB2-SiC axis, the situation is more differen- 
tiated. The large CTE mismatch allows for reinforce- 
ment effects to be expected, however, the lack of 
cohesion between both materials will be a limiting 
factor. On the TiB2 side, the bonding problem has no 
importance since the SiC discrete particles are put 
under compression by the surrounding TiB2 matrix. 
This may cause microcracking and, hence, increase the 
fracture toughness, i.e. 6.4 M P a m  1/2 for composite 
No. 10. On the SiC side, the large TiB2 CTE causes 
this second phase to shrink from the SiC matrix, since 
there are only weak bonds between these phases, de- 
cohesion of the TiB2 particles may occur. This ex- 
plains the moderate fracture toughness of composite 
No. 11, i.e. 4.2 M P a m  1/2. 

On the TiC-SiC axis, both the large CTE mismatch 
and the strong bonds developed between the materials 
are favourable in terms of reinforcement effects. On 
the TiC side, microcracking may occur in the TiC 
matrix around the SiC particles, with its propitious 
consequences already described, i.e. 6.4 MPa m 1/2 for 
composite No. 12. On the SiC side, the TiC discrete 
particles will again tend to shrink away from the SiC 
matrix. However, this time, the strong bonds de- 
veloped between the materials, will avoid decohesion 
and, furthermore, will cause the SiC matrix to come 
into compression. This is an efficient toughening 
mechanism, i.e. 5.6 M P a m  1/2 for composite No. 13. 
The steady stage of the fracture toughness values for 
the three phase composites (No. 7, 14, 15, 16) around 
6 M P a m  ~/2 seems to indicate, that whatever the 
toughening mechanisms are, their benefit is similar. 
For composite 15, some crack branching is observed 
(Fig. 8b), and for composite 14 and 16, crack deflection 
and crack pinning (Fig. 8a and c) are the main mech- 
anisms. 

4 . 4 .  C r i t i c a l  f l a w  s i z e  

Since the bend strength as well as the fracture tough- 
ness are known, it is interesting to compute the critical 

T / B 2  
v 5.z,8 

I 

.7 

2 . ~ . 5  4 , 4 ~ . 6  J 

" - - - w -  ~ w " . . . .  n 

S i C  5.~,3  s .~ .~  8.4,.~ T i C  

5 . ~ ' . 5  

Figure 7 Isofracture toughness curves plotted using a second order polynomial model. The incrementation step between two curves is 
0.25 MPa m 1/2. The black points are test points. 
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flaw size using Griffith relation 

a = 0 . 2 6 8 ( K 1 ~  2 (3) 
\ O ' f  / 

Its standard deviation arises from strength's and 
toughness' one. Table IV lists the critical flaw sizes 
and their differences with several polynomial models. 
Their values range from 6 gm on the TiB2-TiC axis to 
18 rtm on the TiB2-SiC axis. A third order polynomial 
model is necessary to fit the data within the computed 
standard deviation. 

Y = 8.19X1 + 17.02X2 + 8.71X3 

- 2 4 . 9 2 X 1 X z  + 23.44X1X3 - 4.38X2X3 

+ 1 9 . 2 X 1 X 2 ( X 1  - X 2 )  - 4.89X1X3 

X ( X  1 - -  X 3 )  - -  3 2 . 2 X 2 X 3 ( X 2  --  X 3 )  

- 2 0 . 3 6 X 1 X 2 X 3  (4) 

where Y is the critical flaw size lain and Xi the molar 
fraction of i, with 1 :TiB2, 2: TiC, 3: SiC. 

The evolution of the critical flaw size in the ternary 
system is shown in Fig. 9. For the binary and ternary 
composites, to high modulus of rupture correspond 
small critical flaw sizes and conversely. This is an 
expected trend since the variation of fracture tough- 
ness in this area is rather low. 

Figure 8 C r a c k s  m o r p h o l o g y  in three  p h a s e  compos i tes :  (a) 6 7 %  

TiBz ( g r e y ) - 1 6 . 5 %  TiC (wh i t e ) -16 .5% SiC (black); (b) 16.5% 

TiB2 - 6 7 %  T i C - t 6 . 5 %  SiC; a n d  (c) 16.5% TiBz 16.5% T I C - 6 7 %  

SiC. 

4.5. H a r d n e s s  
The Vickers hardness (1 kg load) of the different com- 
posites are listed in Table V. The hardness values 
range form 17.5 GPa  for pure TiB2 to 32.3 GPa  for 
pure SiC. In Table V, the differences A between the 
experimental hardness and the values computed with 
polynomial models of different orders are also re- 
ported. 

With the linear model, the A values ranges from 0 to 
3.1 GPa. Since the confidence it is possible to have in 

T A B L E  I V  C o m p u t e d  va lues  of  cr i t ica l  f law size a n d  the i r  differences wi th  p o l y n o m i a l  mode l s  of  first, s econd  a n d  cub ic  degrees  

TiB2 T i C  SiC Cr i t ica l  Differences  wi th  p o l y n o m i a l  m o d e l s  o f  

(tool %) f law size degree  
( g m )  l~t 2,d 3ra 

1 100 0 0 8.5 __+ 3.2 - 0. l 0.1 - 0.3 

2 0 100 0 17.2 4- 8.0 - 5.8 - 1.2 - 0.2 

3 0 0 100 9.0 __+ 4.9 3.9 0.6 - 0.3 

4 50 50 0 8.0 ,+ 2.9 1.8 - 1.7 - 1.6 

5 50 0 50 17.7 __+ 8.0 - 7.0 - 3.5 - 3.4 

6 0 50 50 13.0 • 5.7 - 0.8 - 1.3 - 1.2 

7 33 33 33 9.9 __+ 4.3 1.0 0.6 0.0 

8 67 33 0 6.1 +__ 2.6 3.3 - 0.4 0.9 

9 33 67 0 6.2 __+_ 3.0 4.2 2.0 0.9 

10 67 0 33 11.3 4- 3.2 - 1.4 2.1 1.9 

11 33 0 67 12.2 4-__ 1.7 - 0.8 1.5 1.9 

12 0 67 33 10,2 ___% 2.1 1.6 2.7 0.7 

13 0 33 67 12.2 __+ 5.1 0.2 - 1.4 0.7 

test po in t s  

14 67.0 16.5 16.5 11.4 _+ 4.3 - 1.8 - 2.0 - 1.5 

15 16.5 67.0 16.5 8.9 _+ 1.6 2.2 2.2 - 0.6 
16 16.5 16.5 67.0 18.2 I_ 5.5 - 6.3 - 6.6 - 5.1 
18 20.0 55.0 25.0 9.5 4- 4.0 1.6 1.2 - 1.1 
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TiBa  
v B ,5~3 .2  

17.7• 

t2.1~-t .7 ,  

1 t . 3 1 3 . 2  

# J/ 
18.2~5.5 

t i . 4 •  

X g.g~4.3 / ~ ~ 

2 .6  

8~2.9 

B.9~I.6 

6 . ~ t 3  

SiC +.a .~+ . i  I ~ 5 . 7  io.m-a.1 TiC 
Figure 9 lsocritical flaw sizes curves plotted using a third order polynomial model. The incrementation step between two curves is 1/am. The 
black points are test points. 

T A B LE V Experimental hardness values and their differences with polynomial models of first, second and third degrees 

TiB 2 TiC SiC Experimental Differences with polynomial models of 
(mol %) hardness degree 

(GPa) I st 2 ~ 3 rd 

1 100 0 0 17 .5•  3.1 0.5 0.0 
2 0 100 0 2 6 . 7 •  0.0 - 0 . 1  - 0 . 1  
3 0 0 100 32 .3 •  0.0 0.0 0.0 
4 50 50 0 25 .3•  - 1 . 7  - 0 . 6  - 0 . 4  
5 50 0 50 2 8 . 1 •  - 1 . 6  - 0 . 6  - 0 . 4  
6 0 50 50 2 9 . 0 •  0.5 - 0 . 6  - 0 . 4  
7 33 33 33 2 6 . 3 •  0.3 1.0 0.0 
8 67 33 0 2 3 . 9 •  1.3 - 0 . 9  0.2 
9 33 67 0 2 4 . 8 •  - 0 . 1  1.0 0.2 

10 67 0 33 24.9 • 2.1 - 0.4 0.0 0.2 
11 33 0 67 29.5 • 2.5 1.1 0.1 0.2 
12 0 67 33 27.9 • 2.2 0.7 - 0.3 0.2 
13 0 33 67 29.0 • 2.9 1.5 0.5 0.2 

tes tpoints  

14 67.0 16.5 16.5 2 5 . 2 •  1.7 - 1 . 4  - 1 . 1  
15 16.5 67.0 16.5 2 6 . 4 •  0.2 0.6 - 0 . 3  
16 16.5 16.5 67.0 2 8 . 8 •  0.7 1.0 0.2 
18 20.0 55.0 25.0 2 6 . 6 •  0.3 0.7 - 0 . 4  

hardness measurements is estimated to be _ 2 GPa, 
this model is discarded. With the quadratic model, the 
A values are smaller than 1 GPa  for the points used for 
the polynomial fitting and A reaches 1.4 GPa  for the 

test points. Considering the hardness measurements 
precision, this model is in good agreement with the 
experimental values. The cubic model matches the 
experimental points even better, i.e. Afitting < 0.4 GPa  

5555 



and mtest < 1 GPa. However, there is no point in hav- 
ing a polynomial model predicting hardness values 
with a better precision than the physical measure- 
ments. And since we are looking for an empirical 
model as simple as possible, we conclude that the 
quadratic polynomial model (Equation 5) is sufficient 
to satisfactorily describe and predict (Fig. 10) the 
evolution of the hardness in the ternary system 
TiBz-TiC-SiC. 

Y = 17.95Xi + 26.6X2 + 32.2X3 

+ 9 .7XIX 2 q'- 9.8X1X3 -- 4XzX3 (5) 

where Y is the computed hardness and Xi the molar 
fraction of i, with 1 : TiB2, 2 : TiC, 3 : SiC. 

4.6. Coefficient of thermal expansion 
The coefficients of thermal expansion, CTE, were 
measured between 20 and 1200 ~ under argon. Their 
values range from 5.1 x 10 -6K -1 for SiC to 
8.4 x 10 -6K -~ for TiC (Table VI). The precision of 
the measure is ,~ 0.1 x 10 .6  K -  1. It is, therefore, con- 
cluded that a linear model (Equation 6) is satisfactory 
to describe (Fig. 11) the CTE evolution in the com- 

plete ternary system. 

Y = 7.75X1 + 8.31X2 + 5.11X3 (6) 

where Y is the computed CTE and Xi the molar 
fraction of i, with l : TiBz, 2 : TiC, 3 : SiC. 

Turner [17] developed a model to compute the 
CTE of composite materials. Assuming that no cracks 
develop, that the contraction of each grain is the same 
as the overall contraction, and that all microstresses 
are purely hydrostatic tension and compression, Rela- 
tion 7 is obtained: The values computed with this 
relation are in good agreement with both the experi- 
mental data and the predicted values with the pt order 
polynomial model. 

(oqK1Fi/pl) + (c~2KzFz/pz) + (ot3KaF3/p3) 
O~, c (KIF1/pl) + (K2Fz/p2) + (KsFs/p3) 

(7) 

where ate is the overall CTE (K- l ) ,  cti the CTE of 
phase i (K 1), Ki the bulk modulus (Pa), Fi the weight 
fraction, and Pi the phase density (g cm 3). 

4.7. Electrical resist ivity 
The electrical resistivity p of pure TiB2 given in Table 
VII, is rather low, i.e. 13 laf~ cm; it is equivalent to that 

T/B2 
v 17.~I .6  

S i C  2.g T i C 
Figure 10 Isohardness curves plotted using a second order polynomial  model. The incrementatJon step between two curves is 0.5 GPa. The 

Mack points are test points. 
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T A B  L E V I  Experimental coefficient of thermal expansion values and values computed with a first degree polynomial and Turner  models 

TiB 2 TiC SiC Coefficient Computed  with Turner 
(tool %) of thermal a 1 s~ degree model 

expansion model 
(10-6 K 1) 

1 100 0 0 7.8 7.8 
2 0 lO0 0 8.4 8.3 
3 0 0 i00 5.1 5.1 
4 50 50 0 7.8 8.0 
5 50 0 50 6.4 6.4 
6 0 50 50 6.6 6.7 
7 33 33 33 7.3 7.1 

8.1 
6.5 
6.8 
7.1 

test points 

14 67.0 16.5 16.5 75 7.4 7.5 
15 16.5 67.0 16.5 7.7 7.7 7.8 
16 16.5 16.5 67.0 6.2 6.1 6.1 
18 20.0 55.0 25.0 7.4 7.4 7.5 

TiB2  
~ 7 . 8  

...t 

6 . 4 , , / \  \ ~ \ . \ \~v 7 .8  , - t  

"o' 

7,3 

aD 

\ 
6,2 

o~ 

5 . t  a . 4  

S i C  6.6 T i C  

Figure l l  Isocoefficient of thermal expansion curves plotted using a linear model. The incrementation step between two curves is 
0.25 • 10 -6 K - l ,  The black points are test points. 

of steel and tin. TiC resistivity is somewhat higher, 
i.e. 64 pD cm. This corresponds to constantan or mer- 
cury. Although SiC is a semi-conductor, processed 
under the present conditions, it is non-conductor, 
i.e. 1013 la~cm. 

As can be seen, the P values of pure SiC is about 
10 l~ times larger than the highest value measured for 

the other composites (point 13). It is impossible for 
a polynomial model to accommodate such a huge 
difference. By taking the logarithm of the resistivity, 
the difference factor is reduced to 5, i.e. form 13 for 
point 3 to 2.8 for point 13. It may be possible for 
a polynom to fit these new data, however, its degree 
will have to be superior or equal to 4. In this study we 
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T A B L E  V I I  Experimental electrical resistivity values, their logarithms, their differences with a polynomial model of  third degree, and 

values computed with Landauer model 

TiB2 TiC SiC Experiment Logarithm of Resistivity Landauer 
(tool % ) resistivity resistivity comp. diff. model 

( p,f~ cm) exp. calc. (~tf~ cm) 

1 100  0 0 13.1 _+ 0.1 1.117 1.118 13.2 0.1 - 

2 0 100 0 64.0 _+ 1.3 1.806 1.809 64.4 0.4 - 
3 0 0 100 1 E 13 . . . .  
4 50 50 0 21.1 _+ 0.1 1.324 1.351 22.4 1.3 23 
5 50 0 50 46.1 _+ 0.3 1.664 1.665 46.2 0.1 39 
6 0 50 50 220 _+ 1.0 2.342 2.359 228.6 8.6 267 
7 33 33 33 50.6 + 1.0 1.704 1.704 50.6 0 69 
8 67 33 0 18.7 _+ 0.2 1.272 1.257 18.1 - 0.6 18 
9 33 67 0 30.6 _ 0.3 1.486 1.471 29.6 - 1 31 

10 67 0 33 26.6 i 0.9 1.425 1.425 26.6 0 22 
11 33 0 67 127 _+ 1.6 2.103 2.103 126.9 0 - 
12 0 67 33 114 +_ 1.0 2.057 2.048 111.7 - 2.2 129 
13 0 33 67 632 i 6.0 2.801 2.792 619.4 - 12.6 - 

test points 

14 67 16.5 16.5 21.2 __ 0.1 1.326 1.357 22.8 1.6 20 
15 16.5 67.0 16.5 49.7 • 0.7 1.696 1.699 50.0 0.3 56 
16 16.5 16.5 67.0 313 __+ 2.6 2.496 2.455 285.1 - 2.8 - 
17 32 55.0 13.0 36.9 __+ 0.2 1.567 1.549 35.4 - 1.5 37 
18 20 55.0 25.0 57.4 __+ 0.6 1.759 1.741 55.0 - 2.4 60 

TiB2 
v 13.1• 

\ 

z. 4 

,f.,~ 

i26 9• ~ X  .,,, 30,6+.3 �9 

S i C 63~6 22o_+i I~3.9+I T i C 

Figure 12 Isocurves of the logarithm of the electrical resistivity plotted using a third order polynomial model. The incrementation step 
between two curves is 0.1 log pf~ cm. The black points are test points. 
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decided to limit the polynomial models to the third 
order to stay within the limit of 20 different composi- 
tions and since our only pretension is to find an 
empirical model describing the evolution of the elec- 
trical resistivity, we tried to find a value for the logar- 
ithm of SiC resistivity that would allow for an 
accurate second or third order polynomial fitting on 
every other point. A third order polynomial model 
(Equation 8) with a value log 9slc = 4 is perfectly 
satisfactory, 

Y = 1.119X1 + 1.809X2 + 4.001X3 

- 0.45X1X2 - 3.581X1X3 - 2.184X2X3 

+ O. 1 0 8 X 1 X z ( X 1  - -  X 2 )  + 1.902X1X3 

x ( X  1 - -  X 3 )  - O , 0 8 9 X 2 X 3 ( X  2 - X 3 )  

+ 2 . 2 9 7 X 1 X z X 3  (8) 

where Y is the logarithm of the electrical resistivity 
and Xi the molar fraction of i, with 1 : TiB2, 2 : TiC, 
3:SIC. 

The differences A between the computed and the 
experimental resistivity are given in Table VII. They 
are very satisfactory since &itti~g < 12.6 gf~cm and 
Atest < 2.8 ~t~'~ c m .  The isoresistivity curves are shown 
in Fig. 12. Obviously, this model with the logarithm of 
the resistivity is only valid up to the last real measured 
point (point 13). Therefore, no prediction can be made 
in the SiC corner. 

Models  to calculate the conductivity (0- = l /p)  of 
composite bodies were developed by different authors 
[18]. The theory of effective medium (Landauer [19]) 
assumes that every dipersed particle of conductivity 
0-1 is located in a medium of mean conductivity 0-m. 
Therefore, the mean electrical field is not particularly 
disturbed by the particle and its value is equal to the 
applied field. The mean conductivity can then be cal- 
culated with Relation 9. 

0-1 - -  0-m 0"2 - -  0-m 
X1 + X2 

0" 1 - -  2 0-m 0-2 - -  2 0-m 

0"3 - -  0-m 
+ X3 = 0 (9) 

0-3 - 2 0-m 

where 0-m is the composite conductivity (~-1 cm-1), 
0-i the conductivity of constituent i, and Xi the vol- 
umic fraction of constituent i. 

In our case, one constituent being insulating 
(Gsic = 0), Relation 9 simplifies into a second order 
polynom. However, the validity of this model is lim- 
ited to composites containing no more than 50% SiC. 
The agreement between values issued from experi- 
ments and from the Landauer model is satisfactory 
(Table VII). 

5. C o n c l u s i o n s *  
The use of a methodology of research using optimal 
design allows the number of samples to be drastically 
reduced, i.e. 16 compositions, necessary to describe 

and predict the evolution of mechanical and electrical 
properties, i.e. modulus of rupture o-f, fracture tough- 
ness K1r critical flaw size a~, hardness Hv, coefficient 
of thermal expansion ~ and electrical resistivity 9 over 
the complete ternary system TiB2-TiC-SiC. Third 
order polynomial models are perfectly satisfactory to 
describe the flexural strength, the critical flaw size and 
the electrical resistivity; for the fracture toughness and 
the hardness quadratic models are already sufficient, 
and for the CTE, a linear model is satisfactory. 

The mathematical model predicts a maximum 
bend strength for the composition 32 mol %TiB2- 
55 mol % TIC-13 tool % SiC, i.e. 1083, in excellent 
agreement with the experimental measure, i.e. 
1073 + 131 MPa. The location of this maximum can 
be explained by the fact that strong bonds are able to 
develop between TiC and TiB2 and between TiC and 
SiC particles. Therefore every TiB2 and SiC reinforce- 
ment particles are firmly bonded to the TiC matrix. 
A fracture toughness of ~ 6 M P a m  1/2 is found for 
every three phase composites. The fracture toughness 
evolution is explained by the coefficient of thermal 
expansion mismatch between SiC on one side and 
TiC, TiB2 on the other, and by their cohesion differ- 
ences. The main toughening mechanisms observed are 
crack deflection and crack pinning. 

We may imagine the use of such a composite as 
structural ceramics (for dies, cutting tools, etc.), cru- 
cibles, electrodes for molten metals or resistors. In 
function of this latter application, one composition 
with good characteristics is selected. The elaboration 
process of this composite is optimized, its pressureless 
sinterability assessed and its mechanical properties 
studied in deeper details, i.e. thermal shock resistance, 
high temperature bend strength, etc. This is reported 
in Part II. 
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